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Abstract—Traditional one-time user authentication processes
might cause friction and unfavorable user experience in many
widely-used applications. This is a severe problem in particular
for security-sensitive facilities if an adversary could obtain
unauthorized privileges after a user’s initial login. Recently,
continuous user authentication (CA) has shown its great poten-
tial by enabling seamless user authentication with few active
participation. We devise a low-cost system exploiting a user’s
pulsatile signals from the photoplethysmography (PPG) sensor in
commercial wrist-worn wearables for CA. Compared to existing
approaches, our system requires zero user effort and is applica-
ble to practical scenarios with non-clinical PPG measurements
having motion artifacts (MA). We explore the uniqueness of the
human cardiac system and design an MA filtering method to
mitigate the impacts of daily activities. Furthermore, we identify
general fiducial features and develop an adaptive classifier using
the gradient boosting tree (GBT) method. As a result, our
system can authenticate users continuously based on their cardiac
characteristics so little training effort is required. Experiments
with our wrist-worn PPG sensing platform on 20 participants
under practical scenarios demonstrate that our system can
achieve a high CA accuracy of over 90% and a low false detection
rate of 4% in detecting random attacks.

I. INTRODUCTION
Traditional user authentication methods rely on users’ in-

puts, such as passwords and graphic patterns. However, these
methods are known to be vulnerable to many attacks [1],
[2]. Recently, multi-factor authentication (MFA) [3], [4] has
been proposed to mitigate these threats by verifying two
or more confidential information from independent sources.
While many applications have adopted either one-factor or
MFA, both of these two approaches use a one-time login
process, which is not secure enough to authenticate users in
the duration of certain applications. This is especially critical
for a security-sensitive application, in which an adversary
could obtain unauthorized privileges after a user’s initial login.
Therefore, a practical continuous user authentication (CA)
solution that can periodically verify a user’s identity without
interruptions of the application usage is highly in demand [5].

Existing CA approaches usually focus on reducing or
eliminating user involvement in the authentication process
by leveraging users’ unique behavioral patterns. For exam-
ple, keystroke/mouse dynamics [6], [7] and gait patterns [8]
have been used for user authentication since 2012. These

approaches usually rely on momentary events and can only
determine a user’s identity by monitoring particular activities
(e.g., typing, mouse-clicking, or walking). There are stud-
ies using cardiac signals (e.g., ECG [9], [10] and cardiac
motion [11]) for CA. All these systems require dedicated
sensors (e.g., ECG or Doppler radar sensors), which are costly
and not readily available in commodity devices. Recently,
researchers find that the photoplethysmography (PPG) sensor
can also provide unique cardiac biometric information for
user authentication [12]-[15]. However, these systems only
focus on clinical scenarios, under which strong and stable
PPG measurements are collected from the fingertips of static
subjects.

Different from the existing works, we develop a low-cost
CA system, TrueHeart, which can periodically verify the
identity of a user via cardiac signals (i.e., PPG) from common
wrist-worn wearable devices (e.g., smartwatches and fitness
trackers). Under a working environment shown in Figure 1(a),
TrueHeart can continuously determine whether a current staff
operating a specific device (e.g., a smartphone or a laptop) is
a legitimate user in a non-intrusive manner so that any time-
sensitive tasks will not be interrupted. As a result, a user can
continuously trade stocks, manage air traffic, or switch circuits.
As a daily life example in Figure 1(b), each family member
with a wearable device can be periodically authenticated by
TrueHeart so that he/she can enjoy a seamless experience of
accessing or switching between user-specific apps on the smart
devices paired with TrueHeart. Therefore, each person can
watch his/her own favorite channels in a smart TV or do online
shopping via a voice assistant. The advantage of using PPG for
CA is obvious as cardiac signals are unique and ever-present
biometrics which are available without users’ involvement. In
addition, PPG requires physical contact to human skin and
is usually hidden in the back of wearable devices. Therefore,
PPG measurements are secure and difficult to counterfeit.

There are several challenges in performing CA using PPG
measurements from wearable devices. First, in contrast to
ECG signals which is electrical and generated by heart activi-
ties, PPG signals capture blood volume changes by measuring
reflected light from human skins. Therefore, PPG signals are
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Fig. 1. Two scenarios of continuous user authentication (CA) using TrueHeart.

relatively coarse-grained, noisy, and more susceptible to inter-
ference than ECG signals. Although initial works [13], [16]
have shown that PPG measurements from fingertips contain
unique features to be used for user authentication in clinical
environments. However, these features are not persistent in
the PPG signals collected from wearable devices in practice.
Second, wrist-worn wearable devices are usually associated
with a lot of hand or body movements from daily activities.
These movements would result in various motion artifacts
(MAs) which make cardiac signals in PPG measurements
often unavailable in practice. Third, due to various types of
imprecisions in PPG sensors in wearable devices and loose
contacts between them and human skins, cardiac signals from
PPG measurements could vary among days or even in the same
day.

To address these challenges, we particularly investigate and
determine general fiducial features that are not only persistent
in various users’ PPG measurements but also can capture
unique characteristics of cardiac motions for CA. Additionally,
we study the MAs of different types of body-movements (e.g.,
walking, moving forearm, and drinking water) in practical
scenarios and categorize them into two types: far-wrist and
near-wrist, based on the recoverability of cardiac signals with
the MAs. We further develop effective MA detection and
MA mitigation/removal mechanisms to identify the two type
of MAs and choose to either recover the cardiac signals
from weak MA impacts or remove the measurements con-
taining strong MA impacts. These mechanisms ensure that
our CA system can extract correct cardiac signals without
the impact from MAs and perform CA accurately under
practical scenarios. Moreover, our system adopts an adaptive
updating mechanism to automatically accommodate the user’s
cardiac signal changes over time based on adaptive training of
associated classifiers. The main contributions of our work are
summarized as follows:

o We develop TrueHeart, the first low-cost CA system, that
can authenticate users by using unique cardiac biomet-
rics extracted from PPG sensors in wrist-worn wearable
devices. Our system can be easily deployed in any PPG-
enabled wearable devices (e.g., smartwatches).

o We extensively study characteristics of MAs under many
practical scenarios and develop robust MA mitigation and
removal mechanisms that can effectively identify different
types of MAs with various intensities and eliminate MA
impact accordingly.

+ We identify general fiducial features that can capture the
uniqueness of users’ cardiac patterns to build an adaptive

gradient boosting tree (GBT)-based classifier that can be
robust to signal drifts in PPG, authenticate users, and
defend against random attack effectively.

o We build a prototype of TrueHeart using commodity PPG
sensors. Experimental results involving 20 participants
demonstrate that TrueHeart can achieve a high average
CA accuracy of over 90% while maintaining a low false
detection rate of 4% when detecting random attacks.

II. RELATED WORK

Recent user authentication systems often use users’ biomet-
rics (e.g., behavioral or physiological information) to reduce
user involvement and facilitate CA. Behavioral pattern is con-
sidered a distinct biometric that can make CA possible based
on users’ daily activities. For example, Mondol et al. [17]
propose a user authentication system leveraging motion sen-
sors in smartwatches to capture users’ signatures in the air for
authentication. Casale et al. [18] develop a wearable-based
authentication system based on users’ walk patterns. How-
ever, these approaches rely on users’ involvement in specific
activities in such a great deal to easily cause inconvenience.

Physiological-based biometrics (e.g., cardiac and respiratory
motions) are popularly used for building CA systems because
they can be obtained without users’ active participation. For
instance, Lin et al. [11] propose a CA system, Cardiac
Scan, which utilizes DC-coupled continuous-wave radar to
capture distinct heart motions in the user identification process.
Rahman er al. [19] develop a method that uses the Doppler
radar to identify users based on their respiratory motions.
Although these systems provide a sound foundation for CA
using wireless technology, they use dedicated devices that
might not be available for users yet. Recently advanced
sensing technologies enable unobtrusive and continuous user
authentication based on unique cardiac biometrics captured
by electrocardiogram (ECG) sensors [20], [21]. While mostly
available under clinical environments, these systems require
users to wear electrodes at various locations. This again turns
out to be inconvenient for the uses in practice.

Unlike ECG, PPG is widely used in commodity wearable
devices such as smartwatches and fitness trackers. Some
initial studies have explored PPG-based authentications. For
example, fiducial features [12], [13] have been discovered
to capture unique characteristics in human cardiac systems
so they can facilitate user authentication processes. Recently,
non-fiducial features (i.e., discrete wavelet transform (DWT)
coefficients) of PPG signals are proposed to build CA sys-
tems [14], [15]. However, all of the aforementioned studies
collect PPG measurements from users’ fingertips thus require
users to wear dedicated PPG sensors and keep motionless.
These requirements are different to meet in reality.

Different from the existing work, we build the first low-
cost PPG-based system that can perform CA in practical
scenarios with various body movements by leveraging PPG
sensors in commodity wrist-worn devices. We identify general
fiducial features that can capture distinct cardiac biometrics of
diverse PPG measurements collected from users’ wrist areas.
In addition, we extensively study the impact of motions with
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Fig. 2. Illustration of the critical landmarks in raw PPG measurements and
its second derivative.

different intensities and develop the MA removal method that
can effectively remove MA and significantly improve the CA
performance. Moreover, our system employs an adaptive user
authentication method that can reduce the impact of system
drifts and provide long-term PPG-based CA.

III. APPROACH OVERVIEW
A. Attack Model

In this paper, we assume that attackers cannot compromise
users’ wearable devices (i.e., gaining access to their memory
storages for raw PPG measurements). Based on this, the
possible attacks to our CA system are as follows:

Random attack. Attackers or their accomplices wear users’
wearable devices and expect the PPG measurements captured
can pass our PPG-based CA system. This random attack model
is similar to the brute-force attack.

Synthesis attack. To launch this attack, attackers first
need to obtain users’ blood flow patterns through either
medical records or vision-based technologies (e.g., remote
photoplethysmography (rPPG) [22]). However, these patterns
and the PPG measurements collected from users’ wrist ar-
eas are different in collection approaches and conditions.
In addition, the PPG signals are collected in an enclosed
environment (between the back of wearable devices and skin
contact areas) so that many critical measurement data (light
absorption/reflection of human skin, light source intensity, etc.)
As a result, synthesis attacks will not be easily launched.

B. Feasibility Study

Intuition of Using Wearable PPG for CA. Human cardiac
systems have been studied and known to be distinct among
people [23]. Along this direction, initial studies [13], [16] have
shown that fiducial features derived from critical landmarks
in the raw PPG measurements and their derivatives (i.e., the
systolic/diastolic peaks, dicrotic notch, and points a/b/c in
Figure 2) can be used as users’ unique biometric information.
However, these studies only analyze PPG data collected from
clinical settings with quite strict requirements. Thus, how to
design and realize a PPG-based CA system using wrist-worn
devices in practices remains a challenging task.

Difference between Wrist-Worn PPG and Fingertip
PPG. To illustrate such a difference, we collect PPG measure-
ments from both fingertip and wrist areas of the same users
simultaneously using our prototype PPG sensing platform. The
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Fig. 3. Example of PPG data from fingertip & wrist and their corresponding
discrete wavelet transform.

top two panels of Figure 3 show that the PPG measurements
from the wrist area are stable but with less detectable and
critical landmarks than those from the fingertip area. This
indicates that the existing fiducial-feature-based authentication
approaches [13], [16] are not applicable directly to the PPG
from wearable devices. We further generate non-fiducial fea-
ture for both PPG measurements using the Daubechies wavelet
of order 4 (db4) with four levels of decomposition. The bottom
two panels in Figure 3 show that the fingertip PPG readings
have repetitive and stable DWT coefficients with respect to
each heartbeat in four levels, whereas the wrist area PPG
readings are embedded with many noisy and irregular DWT
coefficients, which will significantly impact the performance
of the non-fiducial-based PPG authentication work [14], [15].
Therefore, instead of adopting non-fiducial features, there is
a need to explore more general fiducial features in the PPG
signal from the wrist area for CA, which is explained at PPG
Feature Extraction and User Authentication in Section IV.

Impact of Daily Activities. To better understand the impact
of daily activities as motion artifacts (MAs), we categorize
them into three types based on the different moving parts of
human bodies involved: far-wrist, near-wrist, and whole-body
activities. The far-wrist activities are the major arm movements
without involving tendons and muscles of the wrist area. In
contrast, the near-wrist activities are finger-level and/or wrist-
level movements, which have direct impacts on blood volume
changes in the wrist area and more significant impact on
PPG measurements from wearable devices. The whole-body
activities are associated with most of human body parts. We
find that some whole-body activities of low intensity, such as
leisure walking, do not have noticeable impacts on the PPG
measurements as shown in Figure 4. More strenuous activities,
such as running, would change PPG readings significantly.
In this work, we focus on the static and moving scenarios
involving far-wrist and near-wrist activities, which cover the
main scenarios in CA. We present the detailed design of our
system in the following sections.
C. System Overview

The architecture of our PPG-based continuous user authen-
tication system is shown in Figure 5. The system collects
PPG measurements constantly from users’ wearable devices
as the input. Due to hardware imperfection, the raw PPG
measurements inevitably contain baseline drifts and high-
frequency interferences. Therefore, our system first performs
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Noise Reduction using Filtering to reduce such impacts. A
band-pass filter is used to extract pulsatile components in
PPG measurements. After filtering, the system conducts Pulse
Segmentation to determine the PPG segment that is likely to
contain a complete cardiac cycle. The insight is that each
cardiac cycle should include a systolic peak, which could be
identified in the PPG measurement during typical diastole and
systole phases.

Next, we design Motion Artifact (MA) Filtering to remove
MAs caused by daily physical activities. In PPG measure-
ments, MAs arise from tissue deformations and local blood
flow changes in the wrist area. While pulsatile signals are
repetitive in PPG measurements, most MAs have burst PPG
waveforms. We calculate statistical measures, such as kurtosis,
skewness, and standard deviation, in pulse waveforms and MA
signals to determine whether a PPG segment contains a pulse
or an MA in the MA detection process. If MAs are detected,
our system performs MA Classification to further decide
whether they are from far-wrist activities or near-wrist activ-
ities. In general, near-wrist activities result in long-duration
and strong and unrecoverable effects on PPG measurements,
while far-wrist activities have small and recoverable impacts.
When MAs are detected in many consecutive PPG segments,
our system attributes them to near-wrist activities and then
perform MA Removal to eliminate the impacted PPG segments.
On the contrary, if MAs are detected in scattered or only a
few consecutive segments, our system associates them with
far-wrist activities and performs MA Mitigation to reconstruct
related pulse waveforms. After the Motion Artifact (MA)
Filtering, the data processing of our system is separated into
two phases: Training Phase and Authentication Phase.

Training Phase. In this phase, our system performs General
Fiducial Feature Extraction to extract the unique cardiac
features from the PPG segment and its second derivative.
This process applies to both wrist PPG measurements and
fingertip ones. Next, we perform Binary Gradient Boosting
Classifier Construction to train a binary classifier for each
user. In particular, we construct a user’s profile based on some
extracted features and use the Gradient Boosting Tree (GBT)
in training the classifier when the user enrolls in the system.
Furthermore, our system regularly updates the classifier with
new training data to accommodate PPG drifts over time in
Adaptive Updating.

Authentication Phase. In the Authentication Phase, our
system collects PPG segments in real-time and determines
whether a current user is legitimate based on the PPG segments
in a sliding window. Specifically, after our system filters
MAs out from the PPG segments, it would further extract
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general fiducial features. Then our system performs Cardiac
User Identification Using Gradient Boosting Tree by using the
binary gradient boosting classifiers generated in the training
phase to determine the user’s identity based on each PPG
segment. Finally, our system utilizes a majority-vote rule on
the classified results of the PPG segments in the sliding-
window to perform CA. In addition, our CA system is suitable
for commodity wearable devices since their PPG sensors
consume low power (e.g. 4mA) compared to battery capacities
of these devices.

D. Challenges

Accurate Sensing Using Low-cost PPG Sensor on the
Wrist. The low-cost PPG sensors in commodity wearable
devices collect data from users’ wrists at lower sampling rates
with more noise and lower resolution. This will reduce the
accuracy in user authentication.

Robust CA with Body Movements in Daily Activities.
The PPG sensors in the wrist-worn wearable device are
particularly susceptible to daily physical activities. Therefore
we need to explore characteristics of MAs from the PPG
measurement and develop technologies to effectively reduce
such impacts.

Effective Feature Set for General PPG Measurements.
The PPG measurements from the wrist area are unstable and
weak, leading to fewer detectable fiducial features. Thus, we
need to exam general effective features for CA.

Persistent User Authentication Against PPG Drifts. The
typical system-drifts in PPG sensors which could significantly
impact the CA performance. Our system should study these
drifts and adaptively accommodate the resulting PPG varia-
tions during a long time period.

IV. PPG FEATURE EXTRACTION AND USER
AUTHENTICATION
In this section, we explore the cardiac features extracted
from PPG measurements and present the details of our adap-
tive user authentication using gradient boosting.

A. General Wrist PPG Feature Extraction

We have shown that the PPG measurements from the wrist
area have fewer fiducial features and non-fiducial features
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compared to the PPG measurements from the fingertip. There-
fore, we explore the fiducial features that are still available
in the PPG measurements from the wrist area based on the
29 fiducial features that have been used for user authentica-
tion [16], [24].

General Wrist PPG Fiducial Features. Based on our
experiments with 20 participants, we find that 60% of the
PPG measurements from the wrist area have only one obvious
systolic peak in a cardiac cycle. To let our CA system generally
work for various types of PPG measurements, we select to
use five fiducial features that only require a single systolic
peak in the PPG measurements. Figure 6 illustrates how to
derive the five fiducial features from the critical landmarks
in the PPG pulse waveform. The five fiducial features are
generally effective for the user authentication because they
are always available regardless of the source of the PPG
measurements (i.e., from the wrist area or the fingertip), and
they have the physiological relationships with human cardiac
systems. We summarize the five fiducial features and their
physiological meanings as shown in Table I. Note that the
five general fiducial features are always available in the PPG
measurements from the fingertip. Therefore, our CA system is
also applicable to the clinical PPG measurements. We provide
a detailed evaluation of our system on both our PPG data from

the wrist area and the fingertip in Section VII. ]
B. Adaptive cardiac authentication using Gradient Boosting

Tree

Next, we build the binary classifier using Gradient Boost
Tree (GBT) for user authentication. Comparing to other ma-
chine learning methods, GBT can handle the mixed types
of the features with different scales, which is exactly what
our general fiducial feature set possesses. Moreover, GBT is
robust against the outliers via the robust loss functions and
can eliminate the requirement of normalizing or whitening the
feature data before classification [25].

Specifically, given N training samples {(z;,v;)}, where
x; and y; represent the cardiac-related feature set and the
corresponding identity label of the user (i.e., y; = 1 or —1
represents whether z; is from the current legitimate user),
GBT seeks a function ¢(z;) = Zf\le Wi hm (z;) to iteratively
select weak learners A, (-) and their weights w; to minimize
a loss function as follows:

N
L= Ly, ¢w:). 6]

i=1

TABLE I
L1ST OF GENERAL WRIST PPG FEATURES.

Feature Name Feature Description

related to the stroke volume and directly
proportional to vascular distensibility,
which is distinguishable among

different people.

the width of the PPG signal at the half-height
of the systolic peak, and it correlates with
the systemic vascular resistance.

reflects the functionality of a person’s
cardiovascular system.

indicates the pulse wave velocity, which
is distinct from person to person.

reflects the arterial stiffness and the
distensibility of the peripheral artery,
which are also different among people.

In addition, this feature can also reflect
the healthy level of different people.

Systolic Amplitude (As)

Pulse Width (P,,)

Ratio of Pulse Interval to
Systolic amplitude (P; /As)

Crest Time (T,)

Ratio of Amplitude of
b-wave and a-wave
(Ab —w /Aa —w )

We specifically adopt the GBT implementation from the
SQBIib library [26] for cardiac-related feature training. In
order to optimize the speed and accuracy of the GBT model,
we empirically choose the exponential loss L = e¥:¢(%i) as the
loss function L(-) with enough shrinkage (i.e., 0.1) and number
of iterations (i.e., M = 2000), and we take a fraction of 0.5
as the sub-sampling of the training dataset. Once we have
determined the loss function, next we will construct a binary
gradient classifier by (---) for each user gy, k =1,--- , K to
complete the Training Phase. Then for the testing feature set,
each binary gradient classifier will output a score. The reason
to use binary classifier is that binary classifier has higher
accuracy in differentiating one user from other users [27]
which exactly meets the fundamental requirement of a CA
system.

In the authentication phase, our system utilizes the already
built binary classifiers for all the users in parallel to classify
incoming cardiac-related feature set x. In particular, we will
obtain different confidence scores from each binary classifier,
and choose the identity & of the binary classifier by(x) with
the highest score as the final classification. After the user
classification, we adopt a non-overlapped sliding window-
based approach to perform CA. In particular, we consider
P continuous PPG segments in a sliding window as a basic
CA unit and use the majority vote from the classification
results of these PPG segments to determine the user’s identity
periodically. If equal or more than half of the PPG segments
in the window are classified to be the same user, the system
would allow the current user to pass the user authentication.
Otherwise, the current user does not pass the user authentica-
tion. Unless mentioned elsewhere, we use the set the sliding
window size to 4 PPG segments, which generally provides
good performance as shown in our evaluation.

Adaptive Updating. We find that people’s pulse patterns
may slightly vary during the day. Therefore, we design our
system to re-train the underlying classifier based on the
recently collected PPG measurements after each successful
user authentication. Specifically, our system regularly adds a
small amount of the user’s PPG measurements (e.g., 2min) to
the training data to re-train a new classifier for the user in the
background. This re-training process will stop until the new
classifier meets the performance requirement (e.g., when the



CA accuracy reaches 90%), and the new classifier will take
effect until the next time re-training process starts.

V. MOTION ARTIFACTS DETECTION AND FILTERING
In this section, we present the MA detection and classifi-
cation methods. Based on different causes of MA, we present
the details of the MA removal and MA mitigation.

A. Motion Artifacts Detection

After the pulse segmentation mentioned in Section VI, the
system first needs to detect whether MA is affecting the PPG
segments or not. We find that when there is no MA, the
PPG segments should contain similar pulse waveform, thus
the statistics of each PPG segment should be stable over
time. However, when the PPG segments are affected by MA,
the statistics of PPG measurements vary a lot. Therefore, we
propose to examine the statistics of each PPG segment and
use a threshold-based approach to detect the existence of MA.

In particular, we choose three types of statistics (i.e.,
kurtosis, skewness, and standard deviation (STD)) efficiently
measuring the symmetry, tails, and dispersion of the PPG
segments respectively, which are used to effectively detect
MA in existing work [28]. For each type of statistics, we
derive its cumulative distribution function (CDF) based on
high-quality PPG segments (about 20 seconds) without MA.
From the CDF, we determine two thresholds that can include
95% of the values of particular statistics. The statistics of
the testing PPG segments will be compared to the thresholds,
respectively. If any of the three types of statistics from a PPG
segment is out of the range determined by the corresponding
two thresholds, the PPG segment is determined to be affected
by MA. Figure 7 presents an example of our MA detection,
which shows that our method can successfully detect the PPG
segments affected by MA through the three types of statistics
of the PPG segments in a sliding window. We note that the
accuracy of our MA detection method is over 95% in our data
from the wrist collected in the moving-scenario as described
in Section VII.

B. Motion Artifacts Classification

The far-wrist activities (e.g., moving the forearm to reach a
cup) usually create sparse and mild MA to PPG measurements,
while the near-wrist activities (e.g., grabbing a cup) result in
much stronger MA for a considerably longer period. Based
on this observation, we develop an MA classification method,
which examines the proportion of the PPG segments affected
by MA in the sliding window WV and determines whether the
cause of MA is the near-wrist activities or far-wrist activities
using a threshold-based approach. More specific, we denote
the number of PPG segments that are determined to be affected
and not affected by MA in the sliding window as My,
and Ny, respectively. The proportion of the PPG segments
affected by MA in the sliding window is defined as the ratio
A = %—va Next, A is compared to a threshold 6,. The
cause of MA is classified as the near-wrist activities if the
A > Oma. Otherwise, the cause of MA is classified as the
far-wrist activities. From our experimental results from all 20
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Fig. 7. Performance of MA detection and MA removal for the near-wrist
activity.
participants, we find that a short time period W = 10s is
sufficient to cover the duration of typical arm movements,
and the threshold 0,, = 30% is general enough to provide
high accuracy of categorizing the arm movements for all
participants. In our evaluation, we apply this general threshold
for categorizing the movements.
C. Motion Artifacts Removal for Near-wrist Activities

When the system determines that the PPG segments are
affected by the near-wrist activities, it implies that the PPG
measurements are significantly distorted by the MA during
the time in the sliding window, which we consider them
unrecoverable. In this case, we remove all the PPG segments
affected by MA and only perform user authentication using
the rest of the PPG segments in the sliding window. However,
we find that the PPG segments affected by MA may not be
continuous, and the interval between two affected segments
may be too short (e.g., 1 ~ 2 seconds including 1 ~ 3 PPG
segments) for extracting a complete pulse waveform that can
be used to perform user authentication. Hence, we remove
all the PPG segments in between the first and last segments
affected by MA and keep the unaffected PPG segments for
user authentication.

An example of our MA removal for the near-wrist activity is
shown in Figure 7 (a). Based on the MA detection results (i.e.,
7 out of all the 12 PPG segments are determined as MA), we
can determine the PPG measurements in the sliding window
contains the near-wrist activity. Thus, our system removes the
PPG segments affected by MA (i.e., from PPG segment index
3 ~ 10 ) between the first and last detected MA in this
sliding window. As shown in Figure 7 (b), our MA removal
method can successfully remove the PPG measurements that
are impacted by the near-wrist activities with respect to the
ground truth. In addition, it should be noted that our CA
system could still authenticate the user when the hand is stable
before/after the near-wrist activities, and removing the MA
caused by the near-wrist activities does not influence the user
experience since user authentication can be done before the
near-wrist activities.

D. Motion Artifacts Mitigation for Far-wrist Activities

When the system determines that the PPG segments are af-
fected by the far-wrist activities, we notice that the interference
of MA is usually small and recoverable. Therefore, we employ
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Fig. 8. Example of the MA mitigation using SMAF.
a special moving average filter (SMAF) to mitigate those MA
and retain them for continuous authentication. The basic idea
is to average each recognized MA with several pure pulse
segments (i.e., the typical PPG segments without MA) of the
current testing user. Then the MA is able to be mitigated from
the averaged results. Specifically, we first align the pure pulse
PPG segments using the systolic peaks in order to maintain
the locations of the critical fiducial points. Since the number
of the samples in each pulse segment is not equal, we then
interpolate those PPG segments to make them have the same
length. After the interpolation, we will apply the SMAF on the
pure pulse segments and MA using the following equation:

= =
hN:1 Pn+M )
N+1 7
= — .
where the P, represents the pure pulse segments, M is MA
that requires the mitigation, and totally /N pure pulse segments
and 1 MA are averaged with the mitigated result as S. In
particular, we use 4 pure pulse segments for the proposed
SMAF. After the SMAF, we use the smooth function to ensure
the continuity of the filtered signal. Figure 8 illustrates the
effectiveness of our MA mitigation for a far-wrist activity,
which is raising forearm to check the time. From Figure 8
(a), we can see that a small proportion of PPG measurements
(i.e., the measurements highlighted in red) are affected by the
far-wrist activities and detected by our MA detection method.
Figure 8 (b) presents the results after applying the SMFA filter
on the PPG measurements, which can mitigate the impact and
reconstruct the pulse waveforms.
VI. PPG DATA PREPROCESSING AND SEGMENTATION
A. Data Preprocess

S:

The PPG measurements from the low-cost PPG sensor in
wrist-worn wearable devices inevitably contain baseline drift
and high-frequency interference. Since the frequency of the
pulsatile component in PPG is 0.5 — 4Hz, and the frequency
of MA is 0.1Hz and above, our system firstly applies a band-
pass filter to reduce the effect of the baseline drift and high-
frequency noise. In particular, we implement a Butterworth
bandpass filter with the passband 0.5 — 6Hz and the order as 2
to only retain the pulsatile components together with the MA
components having a similar spectrum.

B. Pulse Segmentation

Our system determines the starting and ending points of all
the PPG segments in the sliding window. Figure 2 shows that

Motion Sensor outside  Arduino UNO (REV3)
wrist band b

PPG Sensor inside
wrist band

Fig. 9. Prototype: wrist-worn PPG sensing platform.

the starting and ending points of a typical complete cardiac
cycle correspond to the two valley points before the systolic
and after diastolic points, respectively. Ideally, we can find
all the valley points in the sliding window and extract the
data between every two valley points as the PPG segments.
However, we find that the dicrotic notch could have the lowest
amplitude (i.e., ”fake” valley) in the cardiac cycle. Particularly,
we tackle this issue based on the fact that the time distances
from the systolic peak to the starting and ending points are
in the range of T = 0.15s~ 0.26s and T, = 0.44s~ 0.74s,
respectively [29]. Therefore, the accurate PPG segment can be
extracted by selecting the valleys that are within the typical
time ranges Ts and 7, before and after each systolic peak,
respectively. In addition, through our experiments with 20
participants, we empirically determine the sliding window as
2s larger than one typical pulse waveform (e.g., 0.6 ~ 1
second) to ensure the effectiveness and accuracy of the PPG
segmentation. We also note that our segmentation method is
effective with MA because the system finds PPG segments in
the sliding window based on the peaks and valleys that fulfill
the criteria even though the waveform may be distorted.

VII. PERFORMANCE EVALUATION
A. Experimental Methodology

Wearable Prototype. We notice that existing commodity
wearable devices can only provide the computed heart rate
instead of direct access to raw PPG readings. Therefore,
we design a wrist-worn PPG sensing prototype as shown
in Figure 9, which refers to the layout of PPG and motion
sensors in commodity wrist-worn wearable device (e.g., Apple
Watch). Specifically, the prototype consists of one commodity
green LED PPG sensor attached to the inner side of the
wristband and a motion sensor (i.e., accelerometer) attached
to the outside of the wristband. These sensors are connected to
an Arduino UNO (REV3) board for the sensor measurements
acquisition, which is under a 300H z sampling rate. The PPG
measurements are transferred to a laptop (i.e., Dell Latitude
E6430) to perform user authentication.

Data Collection. We recruit 20 healthy participants whose
ages are between 20 to 40 to collect PPG measurements using
our wearable prototype. Two different scenarios are adopted to
evaluate our system for various practical application scenarios:
In the static scenario, 20 participants are asked to sit quietly
for 10 mins, respectively. While in the moving scenario, we
ask b participants to perform the far-wrist activities (i.e., mov-
ing the forearms) and the near-wrist activities (i.e., grabbing
up a cup and drinking water) repeatedly for 2 mins and sit
still for 3 mins. In total, we collect around 15, 000 PPG pulse
segments from the wrist in the static-scenario and 4, 200 pulse
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segments in the moving-scenario, respectively. In addition,
we also test our system on the IEEE TBME Benchmark
dataset [30], which has 8-mins PPG data collected from the
fingertips of 42 people with a sampling rate of 300 Hz.

B. Evaluation Metrics

Our system periodically authenticate the user based on the
PPG segments in a sliding window and labels the sliding
window as the user or attacker, respectively. We define our
evaluation metrics as follows:

CA Accuracy. The number of sliding windows that are
correctly labeled as the user over the total number of sliding
windows that are examined during the CA process.

Attack Detection Rate. The number of sliding windows
that are correctly labeled as the attacker over the number of
sliding windows that are associated with the attacker during
the CA process.

Attack False Detection Rate. The number of sliding
windows that are incorrectly identified as the attacker over
the number of sliding windows that are associated with the
user during the CA process.

Receiver Operating Characteristic (ROC) Curve. It re-
flects the trade-off between Attack Detection Rate and Attack
False Detection Rate. The smallest distance from the point
on the ROC curve to the top-left corner corresponds to the
optimum model.

In our evaluation, 20 rounds of Monte Carlo cross-validation
are employed for the 10-mins of the collected user data,
among which 5-mins for training and the rest of the data for
authentication.

C. Continuous Authentication (CA) Performance

We first evaluate the general performance of TrueHeart by
examining the CA accuracy in the static scenario. In particular,
we consider each participant acts as a legitimate user once
while remaining participants act as attackers. Figure 10(a)
shows that each user achieves comparable high CA accuracy
with an average of 90.73% CA accuracy, which indicates
that TrueHeart can successfully authenticate users with high
accuracy using the wrist-worn wearable devices. In addition,
Figure 10(b) shows that our system can achieve even better
performance on the PPG data from the fingertip [30] with
39 out of 42 people having the CA accuracy above 96%.
This is because the PPG measurements from the fingertip
are stronger and stabler than the wrist area. These results
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not only demonstrate the promising practical usability of our
proposed user authentication system on common wrist-worn
wearable devices but also indicate that it has promising usage
in clinical environments such as telemedicine and smart-health
applications.

Moreover, to study the performance of our system when
defending against the random attack, Figure 11 shows that the
ROC curve gets closer to the point (0,1) when the number
of the PPG segments in a sliding window becomes larger.
Particularly, our attack detection rate reaches to over 88%
with the attack false detection rate of around 3.9% when the
length of the sliding window is 4. And our system can achieve
over 90% attack detection rate and less than 4.2% attack false
detection rate with six or more PPG segments in a sliding
window. Those results show that our CA system is robust
against the random attacks.

D. Impact of Various Factors

Impact of the Sliding Window Length. The length of the
sliding window corresponds to the number of continuous PPG
segments to perform the majority vote for user authentication.
Particularly, we test the different lengths of the sliding window
with 1, 2, 4, 6, 8 continuous PPG segments (i.e., about 0.7s,
1.4s, 3s, 4.4s, and 6s). Figure 12 shows the CA accuracy
increases as the increment of the sliding window length and
becomes stable at about 90% with four or more PPG segments.
Therefore, we adopt the sliding window with 4 continuous
PPG segments in our system, which not only provides the
high CA accuracy but also has the short response time for the
authentication (i.e., around 3s).

Impact of Training Data Size. Since the training data
size influences the ease of use in terms of the time for data
collection, so we particularly test 1, 2, 3, 4, 5, and 6 mins’
static PPG signals of each user for training respectively, and
use the rest data for testing. Figure 13(a) shows that an average
CA accuracy of 77.75% is achieved only using 1 min’s data of
each user for training. Moreover, the average CA accuracy can
increase to 90.65% and becomes stable when using 5-mins or
more training data of each user. Those results prove that our
system is suitable for practical use since it can achieve very
high CA accuracy with the only limited size of training data
(e.g., b-mins per user).

Impact of Machine Learning Methods. We study the
performance of our system with different underlying machine
learning models. Specifically, we adopt the support vector
machine (SVM) and neural network (NN) using the LIBSVM
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library [31] and the multi-layer perceptron in Scikit-learn [32],
respectively. Figure 13(b) shows that GBT has the best CA
accuracy of 90% compared with SVM (scaling the data)
and NN whose CA accuracy is 75% and 80% respectively.
This result indicates that GBT easily tuned with flexible
optimization options is more suitable for our CA system than
the machine learning methods which either are difficult to
determine the appropriate kernel (e.g., SVM) or require a large
amount of training data and expertise to tune the model (e.g.,
NN).

Impact of Sampling Rate. The sampling rate affects the
power consumption and computational cost in the wearable
devices. In particular, we find that the CA accuracy is as high
as 88% at the lowest sampling rate (i.e., 25H z) and increases
slightly with the increased sampling rate and becomes stable
with 90.7% CA accuracy since 100H z. Those findings imply
that our CA system is not only compatible with the commodity
wrist-worn wearable devices (e.g., Samsung Simband [33]
adopts 128 Hz PPG sampling rate) but also supports the
hardware with even lower PPG sampling rate.

E. CA Performance with MA Removal and MA Mitigation

We next study the performance of our MA removal method
on near-wrist activities and MA mitigation method on far-
wrist activities among 5 participants, respectively. As shown
in Figure 14, while performing far-wrist activities such as
moving forearm, our system could still achieve 72.2% CA
accuracy even without applying the MA mitigation method
and the CA accuracy increases to 89.2% after MA mitigation.
Furthermore, we can see that our system has the CA accuracy
as 36.6% before MA removal and achieve 75.2% after MA
removal for the near-wrist activities such as grabbing up a
cup to mimic drinking water gesture. Those results show
that the far-wrist activities have a relatively slight impact on
our CA system, whereas the near-wrist activities have more
impacts due to the involvement of the tendon and muscle in the
wrist area. Overall, our system has a decent performance after
applying the MA removal method on the near-wrist activities
and MA mitigation method on the far-wrist activities, which
implies that it’s practical for daily life usage.

F. Effectiveness of Adaptive Training

We evaluate our adaptive training using the data collected
by one user across three different hours in a day. Specifically,
we collect 1-hour PPG data starting at 11 AM, 1 PM, and
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Fig. 14. Performance of MA removal.Fig. 15. Performance comparison with
different testing data with and without
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4 PM, respectively. In Figure 15, T'r1 represents the training

set is only from the first hour and T'r, represents the mixed

training set includes the data from both the first hour and 2

mins’ data from the third hour. We can see that our system

trained by T'r1 can achieve 91% CA accuracy during the first
hour, and decreases 5% during the second hour and 7% during
the third hour, respectively. These results demonstrate that the

user cardiac system indeed has some fluctuations during a

long-time period that slightly impact the CA performance.

Moreover, after the adaptive retraining with T'ry, the CA

accuracy will increase back to 90% during the third hour.

Those results prove that our system is suitable for long-time

user authentication with few times of adaptively retraining

which requires a very small amount of the new data. (e.g.,

routinely retrain every 3 hours with only 2 mins’ new data).

VIII. CONCLUSION

In this paper, we develop a low-cost PPG-based continuous
user authentication (CA) system, TrueHeart, using the wrist-
worn wearable devices. Specifically, we explore the diverse
PPG measurements among 20 participants and determine
the representative and general fiducial feature sets that can
facilitate our CA system. We develop an effective motion
artifact (MA) detection method based on the statistics of
the PPG segments. In addition, MA classification and MA
removal modules are designed to mitigate the impact of body
movements. To ensure the long-term robustness of our CA
system, we develop an adaptive user authentication method
using the gradient boosting tree (GBT) technique. We devise
a wrist-worn PPG sensing prototype and conduct extensive
experiments with 20 participants under static and different
moving scenarios. The results show that our system can
achieve a high average CA accuracy of over 90% and a low
attack false detection rate of 4% in practice. We are aware
that continuous near-wrist activity and unexpected sickness
would cause drastically cardiac status changes and impact
the performance of our system. In those cases, our system
would notify the users of using the tradition authentication
approach (e.g., password) to verify their identity temporarily,
then update itself using the adaptive learning.
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