
TrueHeart: Continuous Authentication on

Wrist-worn Wearables Using PPG-based Biometrics

Tianming Zhao∗, Yan Wang∗, Jian Liu†‡, Yingying Chen‡, Jerry Cheng§ and Jiadi Yu¶

∗Temple University, Philadelphia, PA, USA 19122
†The University of Tennessee, Knoxville, TN, USA 37996

‡Rutgers University, New Brunswick, NJ, USA 08901
§New York Institute of Technology, New York, NY, USA 10023
¶Shanghai Jiao Tong University, Shanghai, P.R. China 200240

Email:{tum94362,y.wang}@temple.edu, jliu@utk.edu, yingche@scarletmail.rutgers.edu,

jcheng18@nyit.edu, jiadiyu@sjtu.edu.cn

Abstract—Traditional one-time user authentication processes
might cause friction and unfavorable user experience in many
widely-used applications. This is a severe problem in particular
for security-sensitive facilities if an adversary could obtain
unauthorized privileges after a user’s initial login. Recently,
continuous user authentication (CA) has shown its great poten-
tial by enabling seamless user authentication with few active
participation. We devise a low-cost system exploiting a user’s
pulsatile signals from the photoplethysmography (PPG) sensor in
commercial wrist-worn wearables for CA. Compared to existing
approaches, our system requires zero user effort and is applica-
ble to practical scenarios with non-clinical PPG measurements
having motion artifacts (MA). We explore the uniqueness of the
human cardiac system and design an MA filtering method to
mitigate the impacts of daily activities. Furthermore, we identify
general fiducial features and develop an adaptive classifier using
the gradient boosting tree (GBT) method. As a result, our
system can authenticate users continuously based on their cardiac
characteristics so little training effort is required. Experiments
with our wrist-worn PPG sensing platform on 20 participants
under practical scenarios demonstrate that our system can
achieve a high CA accuracy of over 90% and a low false detection
rate of 4% in detecting random attacks.

I. INTRODUCTION

Traditional user authentication methods rely on users’ in-

puts, such as passwords and graphic patterns. However, these

methods are known to be vulnerable to many attacks [1],

[2]. Recently, multi-factor authentication (MFA) [3], [4] has

been proposed to mitigate these threats by verifying two

or more confidential information from independent sources.

While many applications have adopted either one-factor or

MFA, both of these two approaches use a one-time login

process, which is not secure enough to authenticate users in

the duration of certain applications. This is especially critical

for a security-sensitive application, in which an adversary

could obtain unauthorized privileges after a user’s initial login.

Therefore, a practical continuous user authentication (CA)

solution that can periodically verify a user’s identity without

interruptions of the application usage is highly in demand [5].

Existing CA approaches usually focus on reducing or

eliminating user involvement in the authentication process

by leveraging users’ unique behavioral patterns. For exam-

ple, keystroke/mouse dynamics [6], [7] and gait patterns [8]

have been used for user authentication since 2012. These

approaches usually rely on momentary events and can only

determine a user’s identity by monitoring particular activities

(e.g., typing, mouse-clicking, or walking). There are stud-

ies using cardiac signals (e.g., ECG [9], [10] and cardiac

motion [11]) for CA. All these systems require dedicated

sensors (e.g., ECG or Doppler radar sensors), which are costly

and not readily available in commodity devices. Recently,

researchers find that the photoplethysmography (PPG) sensor

can also provide unique cardiac biometric information for

user authentication [12]–[15]. However, these systems only

focus on clinical scenarios, under which strong and stable

PPG measurements are collected from the fingertips of static

subjects.

Different from the existing works, we develop a low-cost

CA system, TrueHeart, which can periodically verify the

identity of a user via cardiac signals (i.e., PPG) from common

wrist-worn wearable devices (e.g., smartwatches and fitness

trackers). Under a working environment shown in Figure 1(a),

TrueHeart can continuously determine whether a current staff

operating a specific device (e.g., a smartphone or a laptop) is

a legitimate user in a non-intrusive manner so that any time-

sensitive tasks will not be interrupted. As a result, a user can

continuously trade stocks, manage air traffic, or switch circuits.

As a daily life example in Figure 1(b), each family member

with a wearable device can be periodically authenticated by

TrueHeart so that he/she can enjoy a seamless experience of

accessing or switching between user-specific apps on the smart

devices paired with TrueHeart. Therefore, each person can

watch his/her own favorite channels in a smart TV or do online

shopping via a voice assistant. The advantage of using PPG for

CA is obvious as cardiac signals are unique and ever-present

biometrics which are available without users’ involvement. In

addition, PPG requires physical contact to human skin and

is usually hidden in the back of wearable devices. Therefore,

PPG measurements are secure and difficult to counterfeit.

There are several challenges in performing CA using PPG

measurements from wearable devices. First, in contrast to

ECG signals which is electrical and generated by heart activi-

ties, PPG signals capture blood volume changes by measuring

reflected light from human skins. Therefore, PPG signals are
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Fig. 1. Two scenarios of continuous user authentication (CA) using TrueHeart.

relatively coarse-grained, noisy, and more susceptible to inter-

ference than ECG signals. Although initial works [13], [16]

have shown that PPG measurements from fingertips contain

unique features to be used for user authentication in clinical

environments. However, these features are not persistent in

the PPG signals collected from wearable devices in practice.

Second, wrist-worn wearable devices are usually associated

with a lot of hand or body movements from daily activities.

These movements would result in various motion artifacts

(MAs) which make cardiac signals in PPG measurements

often unavailable in practice. Third, due to various types of

imprecisions in PPG sensors in wearable devices and loose

contacts between them and human skins, cardiac signals from

PPG measurements could vary among days or even in the same

day.

To address these challenges, we particularly investigate and

determine general fiducial features that are not only persistent

in various users’ PPG measurements but also can capture

unique characteristics of cardiac motions for CA. Additionally,

we study the MAs of different types of body-movements (e.g.,

walking, moving forearm, and drinking water) in practical

scenarios and categorize them into two types: far-wrist and

near-wrist, based on the recoverability of cardiac signals with

the MAs. We further develop effective MA detection and

MA mitigation/removal mechanisms to identify the two type

of MAs and choose to either recover the cardiac signals

from weak MA impacts or remove the measurements con-

taining strong MA impacts. These mechanisms ensure that

our CA system can extract correct cardiac signals without

the impact from MAs and perform CA accurately under

practical scenarios. Moreover, our system adopts an adaptive

updating mechanism to automatically accommodate the user’s

cardiac signal changes over time based on adaptive training of

associated classifiers. The main contributions of our work are

summarized as follows:

• We develop TrueHeart, the first low-cost CA system, that

can authenticate users by using unique cardiac biomet-

rics extracted from PPG sensors in wrist-worn wearable

devices. Our system can be easily deployed in any PPG-

enabled wearable devices (e.g., smartwatches).

• We extensively study characteristics of MAs under many

practical scenarios and develop robust MA mitigation and

removal mechanisms that can effectively identify different

types of MAs with various intensities and eliminate MA

impact accordingly.

• We identify general fiducial features that can capture the

uniqueness of users’ cardiac patterns to build an adaptive

gradient boosting tree (GBT)-based classifier that can be

robust to signal drifts in PPG, authenticate users, and

defend against random attack effectively.

• We build a prototype of TrueHeart using commodity PPG

sensors. Experimental results involving 20 participants

demonstrate that TrueHeart can achieve a high average

CA accuracy of over 90% while maintaining a low false

detection rate of 4% when detecting random attacks.

II. RELATED WORK

Recent user authentication systems often use users’ biomet-

rics (e.g., behavioral or physiological information) to reduce

user involvement and facilitate CA. Behavioral pattern is con-

sidered a distinct biometric that can make CA possible based

on users’ daily activities. For example, Mondol et al. [17]

propose a user authentication system leveraging motion sen-

sors in smartwatches to capture users’ signatures in the air for

authentication. Casale et al. [18] develop a wearable-based

authentication system based on users’ walk patterns. How-

ever, these approaches rely on users’ involvement in specific

activities in such a great deal to easily cause inconvenience.

Physiological-based biometrics (e.g., cardiac and respiratory

motions) are popularly used for building CA systems because

they can be obtained without users’ active participation. For

instance, Lin et al. [11] propose a CA system, Cardiac

Scan, which utilizes DC-coupled continuous-wave radar to

capture distinct heart motions in the user identification process.

Rahman et al. [19] develop a method that uses the Doppler

radar to identify users based on their respiratory motions.

Although these systems provide a sound foundation for CA

using wireless technology, they use dedicated devices that

might not be available for users yet. Recently advanced

sensing technologies enable unobtrusive and continuous user

authentication based on unique cardiac biometrics captured

by electrocardiogram (ECG) sensors [20], [21]. While mostly

available under clinical environments, these systems require

users to wear electrodes at various locations. This again turns

out to be inconvenient for the uses in practice.

Unlike ECG, PPG is widely used in commodity wearable

devices such as smartwatches and fitness trackers. Some

initial studies have explored PPG-based authentications. For

example, fiducial features [12], [13] have been discovered

to capture unique characteristics in human cardiac systems

so they can facilitate user authentication processes. Recently,

non-fiducial features (i.e., discrete wavelet transform (DWT)

coefficients) of PPG signals are proposed to build CA sys-

tems [14], [15]. However, all of the aforementioned studies

collect PPG measurements from users’ fingertips thus require

users to wear dedicated PPG sensors and keep motionless.

These requirements are different to meet in reality.

Different from the existing work, we build the first low-

cost PPG-based system that can perform CA in practical

scenarios with various body movements by leveraging PPG

sensors in commodity wrist-worn devices. We identify general

fiducial features that can capture distinct cardiac biometrics of

diverse PPG measurements collected from users’ wrist areas.

In addition, we extensively study the impact of motions with
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Fig. 2. Illustration of the critical landmarks in raw PPG measurements and
its second derivative.

different intensities and develop the MA removal method that

can effectively remove MA and significantly improve the CA

performance. Moreover, our system employs an adaptive user

authentication method that can reduce the impact of system

drifts and provide long-term PPG-based CA.

III. APPROACH OVERVIEW

A. Attack Model

In this paper, we assume that attackers cannot compromise

users’ wearable devices (i.e., gaining access to their memory

storages for raw PPG measurements). Based on this, the

possible attacks to our CA system are as follows:

Random attack. Attackers or their accomplices wear users’

wearable devices and expect the PPG measurements captured

can pass our PPG-based CA system. This random attack model

is similar to the brute-force attack.

Synthesis attack. To launch this attack, attackers first

need to obtain users’ blood flow patterns through either

medical records or vision-based technologies (e.g., remote

photoplethysmography (rPPG) [22]). However, these patterns

and the PPG measurements collected from users’ wrist ar-

eas are different in collection approaches and conditions.

In addition, the PPG signals are collected in an enclosed

environment (between the back of wearable devices and skin

contact areas) so that many critical measurement data (light

absorption/reflection of human skin, light source intensity, etc.)

As a result, synthesis attacks will not be easily launched.

B. Feasibility Study

Intuition of Using Wearable PPG for CA. Human cardiac

systems have been studied and known to be distinct among

people [23]. Along this direction, initial studies [13], [16] have

shown that fiducial features derived from critical landmarks

in the raw PPG measurements and their derivatives (i.e., the

systolic/diastolic peaks, dicrotic notch, and points a/b/c in

Figure 2) can be used as users’ unique biometric information.

However, these studies only analyze PPG data collected from

clinical settings with quite strict requirements. Thus, how to

design and realize a PPG-based CA system using wrist-worn

devices in practices remains a challenging task.

Difference between Wrist-Worn PPG and Fingertip

PPG. To illustrate such a difference, we collect PPG measure-

ments from both fingertip and wrist areas of the same users

simultaneously using our prototype PPG sensing platform. The
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Fig. 3. Example of PPG data from fingertip & wrist and their corresponding
discrete wavelet transform.

top two panels of Figure 3 show that the PPG measurements

from the wrist area are stable but with less detectable and

critical landmarks than those from the fingertip area. This

indicates that the existing fiducial-feature-based authentication

approaches [13], [16] are not applicable directly to the PPG

from wearable devices. We further generate non-fiducial fea-

ture for both PPG measurements using the Daubechies wavelet

of order 4 (db4) with four levels of decomposition. The bottom

two panels in Figure 3 show that the fingertip PPG readings

have repetitive and stable DWT coefficients with respect to

each heartbeat in four levels, whereas the wrist area PPG

readings are embedded with many noisy and irregular DWT

coefficients, which will significantly impact the performance

of the non-fiducial-based PPG authentication work [14], [15].

Therefore, instead of adopting non-fiducial features, there is

a need to explore more general fiducial features in the PPG

signal from the wrist area for CA, which is explained at PPG

Feature Extraction and User Authentication in Section IV.

Impact of Daily Activities. To better understand the impact

of daily activities as motion artifacts (MAs), we categorize

them into three types based on the different moving parts of

human bodies involved: far-wrist, near-wrist, and whole-body

activities. The far-wrist activities are the major arm movements

without involving tendons and muscles of the wrist area. In

contrast, the near-wrist activities are finger-level and/or wrist-

level movements, which have direct impacts on blood volume

changes in the wrist area and more significant impact on

PPG measurements from wearable devices. The whole-body

activities are associated with most of human body parts. We

find that some whole-body activities of low intensity, such as

leisure walking, do not have noticeable impacts on the PPG

measurements as shown in Figure 4. More strenuous activities,

such as running, would change PPG readings significantly.

In this work, we focus on the static and moving scenarios

involving far-wrist and near-wrist activities, which cover the

main scenarios in CA. We present the detailed design of our

system in the following sections.
C. System Overview

The architecture of our PPG-based continuous user authen-

tication system is shown in Figure 5. The system collects

PPG measurements constantly from users’ wearable devices

as the input. Due to hardware imperfection, the raw PPG

measurements inevitably contain baseline drifts and high-

frequency interferences. Therefore, our system first performs
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Noise Reduction using Filtering to reduce such impacts. A

band-pass filter is used to extract pulsatile components in

PPG measurements. After filtering, the system conducts Pulse

Segmentation to determine the PPG segment that is likely to

contain a complete cardiac cycle. The insight is that each

cardiac cycle should include a systolic peak, which could be

identified in the PPG measurement during typical diastole and

systole phases.

Next, we design Motion Artifact (MA) Filtering to remove

MAs caused by daily physical activities. In PPG measure-

ments, MAs arise from tissue deformations and local blood

flow changes in the wrist area. While pulsatile signals are

repetitive in PPG measurements, most MAs have burst PPG

waveforms. We calculate statistical measures, such as kurtosis,

skewness, and standard deviation, in pulse waveforms and MA

signals to determine whether a PPG segment contains a pulse

or an MA in the MA detection process. If MAs are detected,

our system performs MA Classification to further decide

whether they are from far-wrist activities or near-wrist activ-

ities. In general, near-wrist activities result in long-duration

and strong and unrecoverable effects on PPG measurements,

while far-wrist activities have small and recoverable impacts.

When MAs are detected in many consecutive PPG segments,

our system attributes them to near-wrist activities and then

perform MA Removal to eliminate the impacted PPG segments.

On the contrary, if MAs are detected in scattered or only a

few consecutive segments, our system associates them with

far-wrist activities and performs MA Mitigation to reconstruct

related pulse waveforms. After the Motion Artifact (MA)

Filtering, the data processing of our system is separated into

two phases: Training Phase and Authentication Phase.

Training Phase. In this phase, our system performs General

Fiducial Feature Extraction to extract the unique cardiac

features from the PPG segment and its second derivative.

This process applies to both wrist PPG measurements and

fingertip ones. Next, we perform Binary Gradient Boosting

Classifier Construction to train a binary classifier for each

user. In particular, we construct a user’s profile based on some

extracted features and use the Gradient Boosting Tree (GBT)

in training the classifier when the user enrolls in the system.

Furthermore, our system regularly updates the classifier with

new training data to accommodate PPG drifts over time in

Adaptive Updating.

Authentication Phase. In the Authentication Phase, our

system collects PPG segments in real-time and determines

whether a current user is legitimate based on the PPG segments

in a sliding window. Specifically, after our system filters

MAs out from the PPG segments, it would further extract

Training Phase 

Motion Artifact (MA) Filtering

PPG Data from Wrist-worn

Wearable Devices

Noise Reduction using Filtering

Pulse Segmentation

MA 

Detection

No

Authentication Phase

Cardiac User Identification 
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Yes
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Fig. 5. Architecture of TrueHeart.

general fiducial features. Then our system performs Cardiac

User Identification Using Gradient Boosting Tree by using the

binary gradient boosting classifiers generated in the training

phase to determine the user’s identity based on each PPG

segment. Finally, our system utilizes a majority-vote rule on

the classified results of the PPG segments in the sliding-

window to perform CA. In addition, our CA system is suitable

for commodity wearable devices since their PPG sensors

consume low power (e.g. 4mA) compared to battery capacities

of these devices.

D. Challenges

Accurate Sensing Using Low-cost PPG Sensor on the

Wrist. The low-cost PPG sensors in commodity wearable

devices collect data from users’ wrists at lower sampling rates

with more noise and lower resolution. This will reduce the

accuracy in user authentication.

Robust CA with Body Movements in Daily Activities.

The PPG sensors in the wrist-worn wearable device are

particularly susceptible to daily physical activities. Therefore

we need to explore characteristics of MAs from the PPG

measurement and develop technologies to effectively reduce

such impacts.

Effective Feature Set for General PPG Measurements.

The PPG measurements from the wrist area are unstable and

weak, leading to fewer detectable fiducial features. Thus, we

need to exam general effective features for CA.

Persistent User Authentication Against PPG Drifts. The

typical system-drifts in PPG sensors which could significantly

impact the CA performance. Our system should study these

drifts and adaptively accommodate the resulting PPG varia-

tions during a long time period.

IV. PPG FEATURE EXTRACTION AND USER

AUTHENTICATION

In this section, we explore the cardiac features extracted

from PPG measurements and present the details of our adap-

tive user authentication using gradient boosting.

A. General Wrist PPG Feature Extraction

We have shown that the PPG measurements from the wrist

area have fewer fiducial features and non-fiducial features
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compared to the PPG measurements from the fingertip. There-

fore, we explore the fiducial features that are still available

in the PPG measurements from the wrist area based on the

29 fiducial features that have been used for user authentica-

tion [16], [24].

General Wrist PPG Fiducial Features. Based on our

experiments with 20 participants, we find that 60% of the

PPG measurements from the wrist area have only one obvious

systolic peak in a cardiac cycle. To let our CA system generally

work for various types of PPG measurements, we select to

use five fiducial features that only require a single systolic

peak in the PPG measurements. Figure 6 illustrates how to

derive the five fiducial features from the critical landmarks

in the PPG pulse waveform. The five fiducial features are

generally effective for the user authentication because they

are always available regardless of the source of the PPG

measurements (i.e., from the wrist area or the fingertip), and

they have the physiological relationships with human cardiac

systems. We summarize the five fiducial features and their

physiological meanings as shown in Table I. Note that the

five general fiducial features are always available in the PPG

measurements from the fingertip. Therefore, our CA system is

also applicable to the clinical PPG measurements. We provide

a detailed evaluation of our system on both our PPG data from

the wrist area and the fingertip in Section VII.
B. Adaptive cardiac authentication using Gradient Boosting

Tree

Next, we build the binary classifier using Gradient Boost

Tree (GBT) for user authentication. Comparing to other ma-

chine learning methods, GBT can handle the mixed types

of the features with different scales, which is exactly what

our general fiducial feature set possesses. Moreover, GBT is

robust against the outliers via the robust loss functions and

can eliminate the requirement of normalizing or whitening the

feature data before classification [25].

Specifically, given N training samples {(xi, yi)}, where

xi and yi represent the cardiac-related feature set and the

corresponding identity label of the user (i.e., yi = 1 or −1
represents whether xi is from the current legitimate user),

GBT seeks a function φ(xi) =
∑M

m=1 ωmhm(xi) to iteratively

select weak learners hm(·) and their weights ωj to minimize

a loss function as follows:

L =

N∑

i=1

L(yi, φxi). (1)

TABLE I
LIST OF GENERAL WRIST PPG FEATURES.

Feature Name Feature Description

Systolic Amplitude (As)

related to the stroke volume and directly

proportional to vascular distensibility,

which is distinguishable among

different people.

Pulse Width (Pw )

the width of the PPG signal at the half-height
of the systolic peak, and it correlates with

the systemic vascular resistance.

Ratio of Pulse Interval to

Systolic amplitude (Pi/As)

reflects the functionality of a person’s

cardiovascular system.

Crest Time (Tc)
indicates the pulse wave velocity, which

is distinct from person to person.

Ratio of Amplitude of
b-wave and a-wave

(Ab−w/Aa−w )

reflects the arterial stiffness and the

distensibility of the peripheral artery,
which are also different among people.

In addition, this feature can also reflect

the healthy level of different people.

We specifically adopt the GBT implementation from the

SQBlib library [26] for cardiac-related feature training. In

order to optimize the speed and accuracy of the GBT model,

we empirically choose the exponential loss L = eyiφ(xi) as the

loss function L(·) with enough shrinkage (i.e., 0.1) and number

of iterations (i.e., M = 2000), and we take a fraction of 0.5
as the sub-sampling of the training dataset. Once we have

determined the loss function, next we will construct a binary

gradient classifier bk(· · · ) for each user gk, k = 1, · · · ,K to

complete the Training Phase. Then for the testing feature set,

each binary gradient classifier will output a score. The reason

to use binary classifier is that binary classifier has higher

accuracy in differentiating one user from other users [27]

which exactly meets the fundamental requirement of a CA

system.

In the authentication phase, our system utilizes the already

built binary classifiers for all the users in parallel to classify

incoming cardiac-related feature set x. In particular, we will

obtain different confidence scores from each binary classifier,

and choose the identity k of the binary classifier bk(x) with

the highest score as the final classification. After the user

classification, we adopt a non-overlapped sliding window-

based approach to perform CA. In particular, we consider

P continuous PPG segments in a sliding window as a basic

CA unit and use the majority vote from the classification

results of these PPG segments to determine the user’s identity

periodically. If equal or more than half of the PPG segments

in the window are classified to be the same user, the system

would allow the current user to pass the user authentication.

Otherwise, the current user does not pass the user authentica-

tion. Unless mentioned elsewhere, we use the set the sliding

window size to 4 PPG segments, which generally provides

good performance as shown in our evaluation.

Adaptive Updating. We find that people’s pulse patterns

may slightly vary during the day. Therefore, we design our

system to re-train the underlying classifier based on the

recently collected PPG measurements after each successful

user authentication. Specifically, our system regularly adds a

small amount of the user’s PPG measurements (e.g., 2min) to

the training data to re-train a new classifier for the user in the

background. This re-training process will stop until the new

classifier meets the performance requirement (e.g., when the



CA accuracy reaches 90%), and the new classifier will take

effect until the next time re-training process starts.

V. MOTION ARTIFACTS DETECTION AND FILTERING

In this section, we present the MA detection and classifi-

cation methods. Based on different causes of MA, we present

the details of the MA removal and MA mitigation.

A. Motion Artifacts Detection

After the pulse segmentation mentioned in Section VI, the

system first needs to detect whether MA is affecting the PPG

segments or not. We find that when there is no MA, the

PPG segments should contain similar pulse waveform, thus

the statistics of each PPG segment should be stable over

time. However, when the PPG segments are affected by MA,

the statistics of PPG measurements vary a lot. Therefore, we

propose to examine the statistics of each PPG segment and

use a threshold-based approach to detect the existence of MA.

In particular, we choose three types of statistics (i.e.,

kurtosis, skewness, and standard deviation (STD)) efficiently

measuring the symmetry, tails, and dispersion of the PPG

segments respectively, which are used to effectively detect

MA in existing work [28]. For each type of statistics, we

derive its cumulative distribution function (CDF) based on

high-quality PPG segments (about 20 seconds) without MA.

From the CDF, we determine two thresholds that can include

95% of the values of particular statistics. The statistics of

the testing PPG segments will be compared to the thresholds,

respectively. If any of the three types of statistics from a PPG

segment is out of the range determined by the corresponding

two thresholds, the PPG segment is determined to be affected

by MA. Figure 7 presents an example of our MA detection,

which shows that our method can successfully detect the PPG

segments affected by MA through the three types of statistics

of the PPG segments in a sliding window. We note that the

accuracy of our MA detection method is over 95% in our data

from the wrist collected in the moving-scenario as described

in Section VII.

B. Motion Artifacts Classification

The far-wrist activities (e.g., moving the forearm to reach a

cup) usually create sparse and mild MA to PPG measurements,

while the near-wrist activities (e.g., grabbing a cup) result in

much stronger MA for a considerably longer period. Based

on this observation, we develop an MA classification method,

which examines the proportion of the PPG segments affected

by MA in the sliding window W and determines whether the

cause of MA is the near-wrist activities or far-wrist activities

using a threshold-based approach. More specific, we denote

the number of PPG segments that are determined to be affected

and not affected by MA in the sliding window as MW

and NW , respectively. The proportion of the PPG segments

affected by MA in the sliding window is defined as the ratio

λ = MW

NW
. Next, λ is compared to a threshold θma. The

cause of MA is classified as the near-wrist activities if the

λ ≥ θma. Otherwise, the cause of MA is classified as the

far-wrist activities. From our experimental results from all 20
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Fig. 7. Performance of MA detection and MA removal for the near-wrist
activity.

participants, we find that a short time period W = 10s is

sufficient to cover the duration of typical arm movements,

and the threshold θma = 30% is general enough to provide

high accuracy of categorizing the arm movements for all

participants. In our evaluation, we apply this general threshold

for categorizing the movements.
C. Motion Artifacts Removal for Near-wrist Activities

When the system determines that the PPG segments are

affected by the near-wrist activities, it implies that the PPG

measurements are significantly distorted by the MA during

the time in the sliding window, which we consider them

unrecoverable. In this case, we remove all the PPG segments

affected by MA and only perform user authentication using

the rest of the PPG segments in the sliding window. However,

we find that the PPG segments affected by MA may not be

continuous, and the interval between two affected segments

may be too short (e.g., 1 ∼ 2 seconds including 1 ∼ 3 PPG

segments) for extracting a complete pulse waveform that can

be used to perform user authentication. Hence, we remove

all the PPG segments in between the first and last segments

affected by MA and keep the unaffected PPG segments for

user authentication.

An example of our MA removal for the near-wrist activity is

shown in Figure 7 (a). Based on the MA detection results (i.e.,

7 out of all the 12 PPG segments are determined as MA), we

can determine the PPG measurements in the sliding window

contains the near-wrist activity. Thus, our system removes the

PPG segments affected by MA (i.e., from PPG segment index

3 ∼ 10 ) between the first and last detected MA in this

sliding window. As shown in Figure 7 (b), our MA removal

method can successfully remove the PPG measurements that

are impacted by the near-wrist activities with respect to the

ground truth. In addition, it should be noted that our CA

system could still authenticate the user when the hand is stable

before/after the near-wrist activities, and removing the MA

caused by the near-wrist activities does not influence the user

experience since user authentication can be done before the

near-wrist activities.

D. Motion Artifacts Mitigation for Far-wrist Activities

When the system determines that the PPG segments are af-

fected by the far-wrist activities, we notice that the interference

of MA is usually small and recoverable. Therefore, we employ
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a special moving average filter (SMAF) to mitigate those MA

and retain them for continuous authentication. The basic idea

is to average each recognized MA with several pure pulse

segments (i.e., the typical PPG segments without MA) of the

current testing user. Then the MA is able to be mitigated from

the averaged results. Specifically, we first align the pure pulse

PPG segments using the systolic peaks in order to maintain

the locations of the critical fiducial points. Since the number

of the samples in each pulse segment is not equal, we then

interpolate those PPG segments to make them have the same

length. After the interpolation, we will apply the SMAF on the

pure pulse segments and MA using the following equation:

S =

∑N
h=1

−→
Ph +

−→
M

N + 1
, (2)

where the
−→
Ph represents the pure pulse segments,

−→
M is MA

that requires the mitigation, and totally N pure pulse segments

and 1 MA are averaged with the mitigated result as S. In

particular, we use 4 pure pulse segments for the proposed

SMAF. After the SMAF, we use the smooth function to ensure

the continuity of the filtered signal. Figure 8 illustrates the

effectiveness of our MA mitigation for a far-wrist activity,

which is raising forearm to check the time. From Figure 8

(a), we can see that a small proportion of PPG measurements

(i.e., the measurements highlighted in red) are affected by the

far-wrist activities and detected by our MA detection method.

Figure 8 (b) presents the results after applying the SMFA filter

on the PPG measurements, which can mitigate the impact and

reconstruct the pulse waveforms.

VI. PPG DATA PREPROCESSING AND SEGMENTATION

A. Data Preprocess

The PPG measurements from the low-cost PPG sensor in

wrist-worn wearable devices inevitably contain baseline drift

and high-frequency interference. Since the frequency of the

pulsatile component in PPG is 0.5 − 4Hz, and the frequency

of MA is 0.1Hz and above, our system firstly applies a band-

pass filter to reduce the effect of the baseline drift and high-

frequency noise. In particular, we implement a Butterworth

bandpass filter with the passband 0.5−6Hz and the order as 2
to only retain the pulsatile components together with the MA

components having a similar spectrum.

B. Pulse Segmentation

Our system determines the starting and ending points of all

the PPG segments in the sliding window. Figure 2 shows that

PPG Sensor inside 

wrist band

Arduino UNO (REV3)Motion Sensor outside 

wrist band

Fig. 9. Prototype: wrist-worn PPG sensing platform.

the starting and ending points of a typical complete cardiac

cycle correspond to the two valley points before the systolic

and after diastolic points, respectively. Ideally, we can find

all the valley points in the sliding window and extract the

data between every two valley points as the PPG segments.

However, we find that the dicrotic notch could have the lowest

amplitude (i.e., ”fake” valley) in the cardiac cycle. Particularly,

we tackle this issue based on the fact that the time distances

from the systolic peak to the starting and ending points are

in the range of Ts = 0.15s∼ 0.26s and Te = 0.44s∼ 0.74s,

respectively [29]. Therefore, the accurate PPG segment can be

extracted by selecting the valleys that are within the typical

time ranges Ts and Te before and after each systolic peak,

respectively. In addition, through our experiments with 20
participants, we empirically determine the sliding window as

2s larger than one typical pulse waveform (e.g., 0.6 ∼ 1
second) to ensure the effectiveness and accuracy of the PPG

segmentation. We also note that our segmentation method is

effective with MA because the system finds PPG segments in

the sliding window based on the peaks and valleys that fulfill

the criteria even though the waveform may be distorted.

VII. PERFORMANCE EVALUATION

A. Experimental Methodology

Wearable Prototype. We notice that existing commodity

wearable devices can only provide the computed heart rate

instead of direct access to raw PPG readings. Therefore,

we design a wrist-worn PPG sensing prototype as shown

in Figure 9, which refers to the layout of PPG and motion

sensors in commodity wrist-worn wearable device (e.g., Apple

Watch). Specifically, the prototype consists of one commodity

green LED PPG sensor attached to the inner side of the

wristband and a motion sensor (i.e., accelerometer) attached

to the outside of the wristband. These sensors are connected to

an Arduino UNO (REV3) board for the sensor measurements

acquisition, which is under a 300Hz sampling rate. The PPG

measurements are transferred to a laptop (i.e., Dell Latitude

E6430) to perform user authentication.

Data Collection. We recruit 20 healthy participants whose

ages are between 20 to 40 to collect PPG measurements using

our wearable prototype. Two different scenarios are adopted to

evaluate our system for various practical application scenarios:

In the static scenario, 20 participants are asked to sit quietly

for 10 mins, respectively. While in the moving scenario, we

ask 5 participants to perform the far-wrist activities (i.e., mov-

ing the forearms) and the near-wrist activities (i.e., grabbing

up a cup and drinking water) repeatedly for 2 mins and sit

still for 3 mins. In total, we collect around 15, 000 PPG pulse

segments from the wrist in the static-scenario and 4, 200 pulse
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Fig. 10. CA accuracy of TrueHeart using the PPG measurements from the
wrist areas and the fingertips.

segments in the moving-scenario, respectively. In addition,

we also test our system on the IEEE TBME Benchmark

dataset [30], which has 8-mins PPG data collected from the

fingertips of 42 people with a sampling rate of 300 Hz.

B. Evaluation Metrics

Our system periodically authenticate the user based on the

PPG segments in a sliding window and labels the sliding

window as the user or attacker, respectively. We define our

evaluation metrics as follows:

CA Accuracy. The number of sliding windows that are

correctly labeled as the user over the total number of sliding

windows that are examined during the CA process.

Attack Detection Rate. The number of sliding windows

that are correctly labeled as the attacker over the number of

sliding windows that are associated with the attacker during

the CA process.

Attack False Detection Rate. The number of sliding

windows that are incorrectly identified as the attacker over

the number of sliding windows that are associated with the

user during the CA process.

Receiver Operating Characteristic (ROC) Curve. It re-

flects the trade-off between Attack Detection Rate and Attack

False Detection Rate. The smallest distance from the point

on the ROC curve to the top-left corner corresponds to the

optimum model.

In our evaluation, 20 rounds of Monte Carlo cross-validation

are employed for the 10-mins of the collected user data,

among which 5-mins for training and the rest of the data for

authentication.

C. Continuous Authentication (CA) Performance

We first evaluate the general performance of TrueHeart by

examining the CA accuracy in the static scenario. In particular,

we consider each participant acts as a legitimate user once

while remaining participants act as attackers. Figure 10(a)

shows that each user achieves comparable high CA accuracy

with an average of 90.73% CA accuracy, which indicates

that TrueHeart can successfully authenticate users with high

accuracy using the wrist-worn wearable devices. In addition,

Figure 10(b) shows that our system can achieve even better

performance on the PPG data from the fingertip [30] with

39 out of 42 people having the CA accuracy above 96%.

This is because the PPG measurements from the fingertip

are stronger and stabler than the wrist area. These results
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not only demonstrate the promising practical usability of our

proposed user authentication system on common wrist-worn

wearable devices but also indicate that it has promising usage

in clinical environments such as telemedicine and smart-health

applications.

Moreover, to study the performance of our system when

defending against the random attack, Figure 11 shows that the

ROC curve gets closer to the point (0, 1) when the number

of the PPG segments in a sliding window becomes larger.

Particularly, our attack detection rate reaches to over 88%
with the attack false detection rate of around 3.9% when the

length of the sliding window is 4. And our system can achieve

over 90% attack detection rate and less than 4.2% attack false

detection rate with six or more PPG segments in a sliding

window. Those results show that our CA system is robust

against the random attacks.

D. Impact of Various Factors

Impact of the Sliding Window Length. The length of the

sliding window corresponds to the number of continuous PPG

segments to perform the majority vote for user authentication.

Particularly, we test the different lengths of the sliding window

with 1, 2, 4, 6, 8 continuous PPG segments (i.e., about 0.7s,

1.4s, 3s, 4.4s, and 6s). Figure 12 shows the CA accuracy

increases as the increment of the sliding window length and

becomes stable at about 90% with four or more PPG segments.

Therefore, we adopt the sliding window with 4 continuous

PPG segments in our system, which not only provides the

high CA accuracy but also has the short response time for the

authentication (i.e., around 3s).

Impact of Training Data Size. Since the training data

size influences the ease of use in terms of the time for data

collection, so we particularly test 1, 2, 3, 4, 5, and 6 mins’

static PPG signals of each user for training respectively, and

use the rest data for testing. Figure 13(a) shows that an average

CA accuracy of 77.75% is achieved only using 1 min’s data of

each user for training. Moreover, the average CA accuracy can

increase to 90.65% and becomes stable when using 5-mins or

more training data of each user. Those results prove that our

system is suitable for practical use since it can achieve very

high CA accuracy with the only limited size of training data

(e.g., 5-mins per user).

Impact of Machine Learning Methods. We study the

performance of our system with different underlying machine

learning models. Specifically, we adopt the support vector

machine (SVM) and neural network (NN) using the LIBSVM
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library [31] and the multi-layer perceptron in Scikit-learn [32],

respectively. Figure 13(b) shows that GBT has the best CA

accuracy of 90% compared with SVM (scaling the data)

and NN whose CA accuracy is 75% and 80% respectively.

This result indicates that GBT easily tuned with flexible

optimization options is more suitable for our CA system than

the machine learning methods which either are difficult to

determine the appropriate kernel (e.g., SVM) or require a large

amount of training data and expertise to tune the model (e.g.,

NN).

Impact of Sampling Rate. The sampling rate affects the

power consumption and computational cost in the wearable

devices. In particular, we find that the CA accuracy is as high

as 88% at the lowest sampling rate (i.e., 25Hz) and increases

slightly with the increased sampling rate and becomes stable

with 90.7% CA accuracy since 100Hz. Those findings imply

that our CA system is not only compatible with the commodity

wrist-worn wearable devices (e.g., Samsung Simband [33]

adopts 128Hz PPG sampling rate) but also supports the

hardware with even lower PPG sampling rate.

E. CA Performance with MA Removal and MA Mitigation

We next study the performance of our MA removal method

on near-wrist activities and MA mitigation method on far-

wrist activities among 5 participants, respectively. As shown

in Figure 14, while performing far-wrist activities such as

moving forearm, our system could still achieve 72.2% CA

accuracy even without applying the MA mitigation method

and the CA accuracy increases to 89.2% after MA mitigation.

Furthermore, we can see that our system has the CA accuracy

as 36.6% before MA removal and achieve 75.2% after MA

removal for the near-wrist activities such as grabbing up a

cup to mimic drinking water gesture. Those results show

that the far-wrist activities have a relatively slight impact on

our CA system, whereas the near-wrist activities have more

impacts due to the involvement of the tendon and muscle in the

wrist area. Overall, our system has a decent performance after

applying the MA removal method on the near-wrist activities

and MA mitigation method on the far-wrist activities, which

implies that it’s practical for daily life usage.

F. Effectiveness of Adaptive Training

We evaluate our adaptive training using the data collected

by one user across three different hours in a day. Specifically,

we collect 1-hour PPG data starting at 11 AM, 1 PM, and
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4 PM, respectively. In Figure 15, Tr1 represents the training

set is only from the first hour and Tr2 represents the mixed

training set includes the data from both the first hour and 2
mins’ data from the third hour. We can see that our system

trained by Tr1 can achieve 91% CA accuracy during the first

hour, and decreases 5% during the second hour and 7% during

the third hour, respectively. These results demonstrate that the

user cardiac system indeed has some fluctuations during a

long-time period that slightly impact the CA performance.

Moreover, after the adaptive retraining with Tr2, the CA

accuracy will increase back to 90% during the third hour.

Those results prove that our system is suitable for long-time

user authentication with few times of adaptively retraining

which requires a very small amount of the new data. (e.g.,

routinely retrain every 3 hours with only 2 mins’ new data).

VIII. CONCLUSION

In this paper, we develop a low-cost PPG-based continuous

user authentication (CA) system, TrueHeart, using the wrist-

worn wearable devices. Specifically, we explore the diverse

PPG measurements among 20 participants and determine

the representative and general fiducial feature sets that can

facilitate our CA system. We develop an effective motion

artifact (MA) detection method based on the statistics of

the PPG segments. In addition, MA classification and MA

removal modules are designed to mitigate the impact of body

movements. To ensure the long-term robustness of our CA

system, we develop an adaptive user authentication method

using the gradient boosting tree (GBT) technique. We devise

a wrist-worn PPG sensing prototype and conduct extensive

experiments with 20 participants under static and different

moving scenarios. The results show that our system can

achieve a high average CA accuracy of over 90% and a low

attack false detection rate of 4% in practice. We are aware

that continuous near-wrist activity and unexpected sickness

would cause drastically cardiac status changes and impact

the performance of our system. In those cases, our system

would notify the users of using the tradition authentication

approach (e.g., password) to verify their identity temporarily,

then update itself using the adaptive learning.
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